

The MINERvA neutrino scattering experiment

Trung Le
Rutgers, State University of New Jersey
for the
MINERvA collaboration

Motivation for MINERVA

- Small neutrino cross sections requires massive detector, heavy targets
- Heavy targets lead to nuclear effects:
 - Interaction probability on bound nucleons is different from free nucleons
 - Interaction of final-state particles with the nuclear medium further complicates the identification of v reactions and distorting the particle energies
 - → Requires understanding of nuclear effects on v cross sections
- Inconsistent experimental results from recent v cross section measurements

What is the MINERVA experiment?

- Neutrino scattering experiment at FNAL
- Intense neutrino beam from NuMI
- Several nuclear targets
- Fully active calorimeter with good tracking capability
- MINOS near detector as spectrometer
- High statistics
- Physics:
 - Precision cross section measurement
 - ➤ A-dependence of v interactions
 - Precision measurement of axial form factor
 - Study of nuclear effects with v interactions

The v beam and flux measurement

➤ Neutrinos are produced from the NuMI beamline

- > Flux can be measured using muon monitors
 - ✓ Measure the flux of muons which are produced together with ν from K, π decays
 - ✓ Different muon monitors `see` muons with different energy thresholds
- ➤ Goal is to understand flux shape and normalization to 10%

Neutrino spectrum

MINERVA Detector

Nuclear targets: Fe (900 kg), Pb (900 kg), C (150 kg), and H2O (not shown)

- > Front-End-Board is mounted on top of the PMT box
 - √ 6 TriP-Ts, developed for D0
 - ✓ Read out 64 channels
 - ✓ Provide high voltage for the PMT
- > FEBs are read out by Chain Readout Controller
 - ✓ VME-based module
 - ✓ Synchronize timing with MINOS and accelerator
 - ✓ Gate opens for 16 µs, every 2.2s

Estimated MINERvA <u>produced</u> event rates

Using the NUGEN Neutrino Event Generator

Assume $4.0x10^{20}$ POT in LE and $12.0x10^{20}$ POT in the ME NuMI beam configurations

Fiducial Volume = 3 tons CH, 0.25t He, 0.15t C, .35t H₂O, 0.9t Fe and 0.9t Pb Expected CC event samples:

9.0 M v events in CH

0.6 M v events in He

0.4 M v events in C

1.0 M events in H₂O

2.7 M v events in Fe

2.7 M v events in Pb

MINERVA is taking data!

- Downstream 55% of the detector installed Nov. 2009, took anti-neutrino data until March 2010, 4x10¹⁹ POT
- Detector completed March 2010, started taking neutrino data
- Expected exposure:
 - \triangleright Low-energy ($\langle E_y \rangle = 4.0 \text{ GeV}$) neutrino, $4 \times 10^{20} \text{ POT}$
 - \blacktriangleright Medium-energy (< E_v> = 8.0 GeV) neutrino in NOvA era, 12x10²⁰ POT

MINERvA in the experiment hall 10/28/2010

Event display

Event 1

Actual events from data

Simulation & Event Reconstruction

MC simulation:

- Use GENIE as event generator
- ➤ Use GEANT4 for particle transport

Event reconstruction:

- > Hits from each readout gate are grouped into time slices using time
- Each time slice is reconstructed independently
 - > Charged particle tracks are detected in 2D using pattern recognition
 - > Two-dimensional μ-like tracks from three views are matched to form 3D track
 - MINERvA tracks are matched to MINOS track for momentum and charge sign
 - Vertex fitting is done using 3D tracks
- Particle identification using dEdx

Calibration:

- Correct for light attenuation in fibers
- Correct for channel response

Kinematic distribution

- ➤ Require MINOS matched track
- ➤ Reject rock muons
- > Full-chain MC
 - ✓ Un-tuned flux
 - ✓ Area normalized to data

MINERvA Muon Angle: $\overline{\nu}_{\mu}$ CC Candidates with μ^{+} in MINOS

Kinematic distribution

Same as previous slide, but for ν_{μ} component in the $\overline{\nu}_{\mu}$ beam

MINERvA Muon Angle: ν_{μ} and $\overline{\nu}_{\mu}$ CC Candidates with μ in MINOS

SUMMARY

- MINERVA is high statistics neutrino scattering experiment at FNAL using the NuMI beam
- Physics goals:
 - ✓ Precision cross section measurement
 - ✓ A-dependence of neutrino interactions
 - ✓ Precision measurement of axial form factor
 - ✓ Study of nuclear effects with v interactions
- Taking data, data analysis tools being developed, preliminary results soon!